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Abstract

We construct a complete set of eigenfunctions of the q-deformed har-

monic oscillator on the quantum line. In particular the eigenfunctions

corresponding to the non-Fock part of the spectrum will be constructed.
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1 Introduction

In this paper we will construct a complete set of eigenfunctions for the q-
deformed harmonic oscillator on the q-deformed line. We define the q-deformed
oscillator [1, 2] as the unital ∗-algebra generated by the element a and its con-
jugate a+, subject to the relation

aa+ − q−2a+a = 1. (1)

We take q > 1, since this will be the case for the realization of these operators,
which we consider below.

The spectrum of the Hamilton operator H ≡ a+a consists of two parts [3].
A bounded part (Fock representation) and an unbounded part:

Spec (H) =

{

1−q−2n

1−q−2 , n ∈ N

1+q2γ−2m

1−q−2 , m ∈ Z, γ ∈ R
(2)

Both parts of the spectrum have an accumulation point at 1
1−q−2 . The Fock

representation is a lowest weight representation with a+ acting as raising op-
erator and a acting as lowering operator. For the second, i.e. the unbounded,
part of the spectrum a is the raising operator.

It is known, that on the q-deformed line the q-deformed Hermite polynomials
are related to the eigenfunctions corresponding to the Fock representation [4, 5].
However, these functions are not complete in the respective Hilbert space of
square integrable functions. One has to consider the eigenfunctions related to
the unbounded part of the spectrum as well. This we will do by using results of
Ciccoli et.al. [6].

2 Representation on the q-deformed line

We will consider a realization of the q-oscillator on the q-deformed real line Rq,
which is defined as being generated by the operators X,P,U with commutation
relations

q
1

2XP − q−
1

2PX = iU

UX = q−1XU, UP = qPU (3)

and the following conjugation:

X+ = X, P+ = P, U+ = U−1 (4)

A realization of the q-oscillator on Rq is given by [4]:

a = αU−2 + βU−1P

a+ = ᾱU2 + β̄PU (5)

1



With α, β ∈ C, such that

αᾱ =
1

1 − q−2
=
q

λ
and αβ̄ = ᾱβ. (6)

The second relation implies α
β

= ᾱ
β̄
∈ R; we define

q−γ ≡ α

β
=
ᾱ

β̄
(7)

The algebra (3) of the q-deformed real line Rq can be realized by operators
acting on functions of one variable:

Xf(x) = xf(x); Pf(x) = −iDqf(x), Uf(x) = q−
1

2 f(q−1x); (8)

where a q-derivative in the following form has been used:

Dqf(x) ≡ f(qx) − f(q−1x)

x(q − q−1)
. (9)

The algebra acts on functions on a ’lattice’ ξqn, ξ ∈ R, n ∈ Z.
The scalar product can be defined in terms of the Jackson integral:

(f, g) ∼
∑

n∈Z

f(qn)g(qn)qn (10)

We will use the following notation:

(a; q)n ≡
n−1
∏

i=0

(1 − aqi); (a; q)∞ ≡ lim
n→∞

(a; q)n (11)

and define the q-exponential function:

eq(x) ≡ 1

(x; q−2)∞

Dqeq(cx) = c
q

λ
eq(qcx), c ∈ C (12)

Using the relations (5) and (8), it is easily seen, that the ground state of the
Fock representation, i.e. the state satisfying aψ0(x) = 0, is given by:

ψ0(x) ≡ Neq(−i
α

β
λq−

1

2 x), (13)

where N is a normalization constant.
The Hamilton operator H ≡ a+a is in terms of Dq and U :

H = a+a = αᾱ− ββ̄D2
q − iαβ̄(U + qU−1)Dq (14)

With this, and the action (8), (9) of Dq and U on functions, the equation

Hf(x) = Ef(x) (15)
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for the eigenfunctions becomes a difference equation:

Ex2λ2f(x) = f(x)
{

αᾱx2λ2 + ββ̄(q + q−1)
}

+f(q2x)
{

−q−1ββ̄ − iαβ̄q
1

2 xλ
}

+f(q−2x)
{

−qββ̄ + iαβ̄q
1

2 xλ
}

(16)

With the definition

E =
1 + ε

1 − q−2
(17)

the equation (16) for the eigenstates f(x) = ψ0(x)g(x) with eigenvalue E be-
comes:

0 = g(x)
{

q + q−1 − εq−2γλ2x2
}

−q−1g(q2x) − qg(q−2x)
{

1 + q−2γ−1λ2x2
}

(18)

Where we now use γ, Eqn. (7), instead of α and β.

3 Orthonormal basis

To solve this equation, we use the basic hypergeometric series 1ϕ1 [7]. The
function f(z) = 1ϕ1(a; c; q, z) satisfies:

(c− az)f(qz) + (−(c+ q) + z)f(z) + qf(z/q) = 0 (19)

We define:

ϕe(x) ≡ 1ϕ1(−ε−1; q−2; q−4, εq−2γ−3λ2x2)

ϕo(x) ≡ 1ϕ1(−q−2ε−1; q−6; q−4, εq−2γ−5λ2x2). (20)

Due to the relation (19) we find that the following functions solve the Eqn. (18):

g(x) = ϕe(x), g(x) = xϕo(x) (21)

These two solutions correspond to parts of the spectrum (2), which are numbered
by even and odd numbers respectively.

It is possible, to combine the two solutions (21) to a function, that yields
the whole spectrum [6]:

(−ε)k
2ϕ1

(

− 1

εq2
,−1

ε
; 0; q−4,−q

4(k−1)

c

)

(22)

= Ce1ϕ1

(

−1

ε
; q−2; q−4,

εc

q4k+2

)

+ Coq
−2k

1ϕ1

(

− 1

εq2
; q−6; q−4,

εc

q4k+4

)

with

Ce =
(−ε−1q−2, ε−1c−1q−4, εc; q−4)∞

(q−2,−c,−c−1q−4; q−4)∞

Co =
(−ε−1, ε−1c−1q−6, εcq2; q−4)∞

(q−6,−c,−c−1q−4; q−4)∞
(23)
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We will discuss some properties of these functions and consider later the
relation to the lattice and Hilbert space coming from representations of the
algebra Eq. (3). First we consider the Fock representation (ε = −q−2p, p ∈ N).
For the lattice points x = ξq2n one has, using the results of [6] (Theorem 4.1)
in the case ε = −q−4p:

ϕp
e(n) = 1ϕ1(q

4p; q−2; q−4,−q−4pq−2γ−3λ2ξ2q4n) (24)

with c ≡ q−2γ−1ξ2λ2 one obtains:

+∞
∑

n=−∞

ϕr
e(n)ϕs

e(n)

(−cq4n; q−4)∞
q2n = δrsq

4r (q−4; q−4)r(q
−4,−cq−2,−q−2c−1; q−4)∞

(q−2; q−4)r(q−2,−c,−q−4c−1; q−4)∞

(25)
Notice, that a q-exponential function turns up as measure under the Jackson
integral, since (x; q)∞(−x; q)∞ = (x2; q2)∞. This is similar to the undeformed

case, where e−
1

2
x2

e−
1

2
x2

= e−x2

leads to the orthogonality measure for the
Hermite polynomials.

For ε = −q−4p−2 one obtains

ϕp
o(n) = q2n

1ϕ1(q
4p; q−6; q−4,−q−4p−2q−2γ−5λ2ξ2q4n) (26)

and

+∞
∑

n=−∞

ϕr
o(n)ϕs

o(n)

(−cq4n; q−4)∞
q2n = δrsq

4r (q−4; q−4)r(q
−4,−cq−6,−q2c−1; q−4)∞

(q−6; q−4)r(q−6,−c,−q−4c−1; q−4)∞

(27)
Now we use (22) to combine these two parts. For ε = −q−4n one finds:

Ce = (−c)−nq4n2
−2n(q−2; q−4)n, Co = 0 (28)

Furthermore Eqn. (22) becomes

(

±
√
cq−2k

)2n
2ϕ1

(

q4n−2, q4n; 0; q−4,− q−4

(±√
cq−2k)2

)

(29)

= (−)nq4n2
−2n(q−2; q−4)n1ϕ1

(

q4n; q−2; q−4,−q−4n−2(±
√
cq−2k)2

)

For ε = −q−4n−2 we find

Ce = 0, Co = (−c)−nq4n2+2n(q−6; q−4)n (30)

and

(

±
√
cq−2k

)2n+1
2ϕ1

(

q4n, q4n+2; 0; q−4,− q−4

(±√
cq−2k)2

)

(31)

= (−)n+1√cq4n2+2n−2k(q−6; q−4)n1ϕ1

(

q4n; q−6; q−4,−q−4n−6(±
√
cq−2k)2

)
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Using m = 2n in the first case ε = −q−4n and m = 2n+ 1 for ε = −q−4n−2 the
left hand sides of the Eqns. (29) and (31) are identical:

h̃m(x) = xm
2ϕ1

(

q2m−2, q2m; 0; q−4,−q
−4

x2

)

(32)

The function ψ0(x)h̃(x) is the eigenfunction corresponding to the eigenvalue
ε = −q−2m. In both cases we obtain from the Eqns. (25), (27)

+∞
∑

k=−∞

h̃m(
√
cq−2k)h̃m(

√
cq−2k)

(−cq−4k; q−4)∞
q−2k = Nc

(q−2; q−2)m

q−2m2
(33)

where Nc = (q−4,−cq−2,−c−1q−2;q−4)∞
(q−2,−c,−c−1q−4;q−4)∞

. The functions h̃m for even m are not

orthogonal to functions h̃m with odd m. Since according to the definition (32)
the functions h̃m(x) are even and odd for even m and odd m respectively, we
extend the sum to negative x-values. Then we have:

+∞
∑

k=−∞,σ=±

h̃m(σ
√
cq−2k)h̃n(σ

√
cq−2k)

(−cq−4k; q−4)∞
q−2k = 2Nc

(q−2; q−2)m

q−2m2
δmn, (34)

which is the well known orthogonality relation for the q-Hermite II polynomials,
that are known to be related to the q-oscillator [5, 8].

Including negative eigenvalues of x, i.e. taking the direct sum of two ir-
reducible representations of the algebra generated by X , P and U , is also a
possibility to obtain a Hilbert space, on which X and P are represented by
self-adjoint operators [9]

We now turn to the unbounded part of the spectrum, i.e. ε = q2γ−2m,m ∈ Z.
To connect our solutions with the results of [6] (Eqn (4.2)), it is necessary, to
set ξ2λ2 = q or, equivalently:

c = q−2γ . (35)

For the functions 1ϕ1(−cq−4ν+4p; q−4ν−4; q−4, c−1xq−4p−4), with ν = ± 1
2 , the

square of the norm is according to [6]:

δprcq
4p+2 (−c−1q−4p−4,−c−1q−2; q−4)∞

(−c−1q−4p−6,−cq−2,−c,−c−1q−4; q−4)∞

(

(q−4,−cq−2; q−4)∞
(q−2; q−4)∞

)2

(36)
and

δprcq
4p−2 (−c−1q−4p−4,−c−1q2; q−4)∞

(−c−1q−4p−2,−cq−6,−c,−c−1q−4; q−4)∞

(

(q−4,−cq−6; q−4)∞
(q−6; q−4)∞

)2

(37)
If we take (35) into account we find for the constants Ce, Co in (22): In the case
ε = q2γ−4p−2 = c−1q−4p−2

Ce = (−c)pq4p2+2p (q−2, q−4)∞
(−c−1q−4p−4; q−4)∞

, Co = 0 (38)
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and for ε = q2γ−4p = c−1q−4p

Ce = 0, Co = −(−c)pq4p2
−2p (q−6, q−4)∞

(−c−1q−4p−4; q−4)∞
(39)

Now, take m = 2p+ 1 in the first case and m = 2p in the second case. Such
that ε = q2γ−2m with m ∈ Z. Putting together these results, the Norm of the
combined solution (22) becomes for both cases

δprc
mq2m2 Mc

(−c−1q−2m−2; q−2)∞
, (40)

with Mc = (q−4,q−4,−c−1q−2,−cq−2;q4 )∞
(−c,−c−1q−4;q−4)∞

.

We define

k̃m(x) = (−x)m−γ
√
c
γ−m

2ϕ1

(

−q2m−2γ−2,−q2m−2γ ; 0; q−4,−q
−4

x2

)

; (41)

if we extend the lattice to negative values as above, these functions are orthog-
onal:

+∞
∑

k=−∞,σ=±

k̃m(σ
√
cq−2k)k̃n(σ

√
cq−2k)

(−cq−4k; q−4)∞
q−2k = 2Mc

cmq2m2

(−c−1q−2m−2, q−2)∞
δmn,

(42)
Also the scalar product of two functions h̃n and k̃m vanishes. The results of
[6] imply that the set of functions h̃n, n ∈ N together with the functions k̃m,
m ∈ Z form a basis of the Hilbert space.

The q-Heisenberg algebra (3) is represented on the space of square integrable
functions on the set

Λ = {σξoqn|σ = ±1, n ∈ Z}, ξo ∈ R. (43)

With the scalar product given by a Jackson integral:

(f, g) = ξo(q − q−1)
∑

σ,n

f(σξoqn)g(σξoq
n)qn. (44)

The operatorsX , P , U act according to (8). X and P are essentially self-adjoint,
U is unitary. A representation is characterized by ξo ∈ [1, q[.

The q-difference equation (16) for the eigenvalues of the Hamilton operator
H = a+a only connects even and odd lattice points among them self. That
means, there is a twofold degeneracy in the spectrum.

Depending on the lattice that we consider (even or odd), the parameter c
has to be related to ξo in different ways. For even lattice points, σξoq

2n, we
have

√
c = ξo. For odd lattice points, σξoq

2n+1, we find q
√
c = ξo and a shift in

γ occurs, which however does not change the spectrum.
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4 Summary

It is well known, that in general spectra of Hamilton operators related to de-
formed oscillator algebras consist of several different parts [10]. The example
discussed in this paper shows, that in order to get self-adjoint representations,
one has to take into account all parts. It would be very interesting to see,
whether these parts play a role in a quantum field theory, that is constructed
with the aid of a deformed oscillator algebra.

In our specific case it turned out, that a nice way to get a self-adjoint rep-
resentation is to consider not only positve lattice points, which already form
a irreducible representation of the algebra (3) , but also negative. This has
also been done in [9] in order to get a representation, such that X and P are
both essentially self-adjoint. It also was shown, that in the unbounded part
1+q2γ−2m

1−q−2 ,m ∈ Z, γ ∈ R of the spectrum one γ is singled out by the chosen

lattice, cf. (35).
As explained in [6], these results also show, that the momentum problem

associated to the weight function 1
(−x2;q−4)∞

, which appears in the orthogonality

relations, e.g. Eq. (34), is indetermined. Each of the functions k̃s is bounded:
|k̃s(±

√
cq−2n)| < C, for all n. Since the functions k̃s are orthogonal to the

Hermite polynomials h̃m and therefore to all polynomials, the moments will not

change if one uses for example 1+C−1k̃s(x)
(−x2;q−4)∞

as weight function. From another

point of view, see e.g. [11], this happens, because the operator X is not self-
adjoint in the space spanned by the q-Hermite polynomials together with the
scalar product, that is given by the moments. In some sense one may interpret
specifying γ as choosing a self-adjoint extension.
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